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Compulsory Part

1. Let R be a commutative ring and I an ideal of R. Show that the set
√
I of all a ∈ R, such

that an ∈ I for some n ∈ Z+, is an ideal of R, called the radical of I .

Answer. Clearly, 01 = 0 ∈ I , so 0 ∈
√
I .

Let x, y ∈
√
I. Then xm, yn ∈ I for some m,n > 0. Then (x+y)m+n =

∑m+n
k=0

(
m+n
k

)
xkym+n−k.

But for any 0 ≤ k ≤ m + n, either k ≥ m or m + n − k ≥ n. Hence either xk ∈ I
or ym+n−k ∈ I . It follows that each summand and hence (x + y)m+n is in I . Then
x+ y ∈

√
I .

Let a ∈ R, x ∈
√
I Then xm ∈ I for some m > 0. Then (ax)m = amxm ∈ I . Therefore,

ax ∈
√
I .

It follows that
√
I is an ideal.

2. Show by examples that for proper ideals I of a commutative ring R,

(a)
√
I need not equal I .

(b)
√
I may equal I .

Answer. (a) Take R = Z[x]/⟨x2⟩ and I = 0. Then x ∈
√
I − I because x2 ∈ ⟨x2⟩.

(b) Take R = Z and I = 0. Then
√
I = I because Z is an integral domain.

3. Prove that Z[x] is not a PID by showing that the ideal ⟨2, x⟩ is not principal.

Answer. Suppose the ideal ⟨2, x⟩ is principal ideal ⟨p(x)⟩. Since 2 ∈ ⟨p(x)⟩, 2 =
p(x)q(x) for some q(x) ∈ Z[x]. Since Z is an integral domain, we have deg(p(x)q(x)) =
deg(p(x)) + deg(q(x)). Thus, both p(x) and q(x) must be constant. The only possible
options for p(x) are {±1,±2}. However, This ideals obviously either contain units or not
contain x.

4. Let D be an integral domain. Show that, for k = 1, . . . , n, the ideal ⟨x1, . . . , xk⟩ is prime
in D[x1, . . . , xn].

Answer. Note that we have the isomorphism: D[x1, .., xn]/⟨x1, ..., xk⟩ ≃ D[xk+1, ..., xn].
We conclude that ⟨x1, ..., xn⟩ is a prime ideal since D[xk+1, ..., xn] is an integral domain.

5. Let φ : R → S be a homomorphism of commutative rings, and let I ⊂ S be an ideal.
Prove that if I is a prime ideal in S, then φ−1(I) is a prime ideal in R. Show by giving an
exmple that, however, φ−1(I) is not necessarily maximal when I is maximal.



2

Answer. Let φ : R → S be a homomorphism of commutative rings, and let I ⊂ S be
an ideal. Suppose I is prime in S. Let x, y ∈ R with xy ∈ φ−1(I). Then φ(x)φ(y) =
φ(xy) ∈ I . Since I is prime, φ(x) ∈ I or φ(y) ∈ I . Therefore, x ∈ φ−1(I) or
y ∈ φ−1(I). It follows that φ−1(I) is a prime ideal in R.

Consider the embedding Z → Q, {0} is a maximal ideal in Q, but its preimage {0} is not
a maximal ideal in Z.

6. Show that every prime ideal in a finite commutative ring R is a maximal ideal.

Answer. Let R be a finite commutative ring. Let P be a prime ideal in R. Then R/P is
a finite integral domain. Let x ∈ R/P be a nonzero element. Let mx : R/P → R/P be
defined by mx(y) = xy. If mx(y) = mx(y

′), then x(y − y′) = mx(y − y′) = 0. Then
y − y′ = 0 since R/P is an integral domain. Therefore, mx is injective. Since R/P is
finite, mx is surjective. Therefore, xy = mx(y) = 1 for some y ∈ R/P . Then x is a unit
in R/P . It follows that R/P is a field. Therefore, P is a maximal ideal in R.
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Optional Part

1. Let R be a commutative ring, and let P be a prime ideal of R. Suppose that 0 is the only
zero-divisor of R contained in P . Show that R is an integral domain.

Answer. Let x, y ∈ R. Suppose xy = 0. Then xy ∈ P , and so x ∈ P or y ∈ P . Without
loss of generality, we assume that x ∈ P . If y ̸= 0, then x is a zero-divisor of R contained
in P . Then x = 0. It follows that y = 0 or x = 0. Therefore, R is an integral domain.

2. An element a of a ring R is nilpotent if an = 0 for some n ∈ Z+.
Show that the collection N of all nilpotent elements in a commutative ring R is an ideal,
called the nilradical of R.

Answer. Note that it is just the set
√

{0}. By Ex.1 in the compulsory part, it is an ideal.

3. Show that the nilradical N of a commutative ring R is contained in every prime ideal of
R.

Answer. By definition of prime ideals, xk = 0 ∈ P ⇒ x ∈ P for any prime ideal P .
Thus the nilradical is contained in each prime ideal.

4. What is the relationship between the radical
√
I of an ideal I in a commutative ring R

and the nilradical of the quotient ring R/I? Explain your answer carefully.

Answer. Let π : R → R/I be the natural projection. Then π(
√
I) =

√
0R/I . Proof:

For any x ∈
√
I, xn ∈ I for some n > 0. Then π(x)n ∈ 0R/I , and so π(x) ∈

√
0R/I .

Therefore, π(
√
I) ⊆

√
0R/I .

Conversely, let y ∈
√

0R/I , then yn = 0R/I for some n > 0. Since π is surjective,
π(x) = y for some x ∈ R. Then π(xn) = yn = 0R/I . Then xn ∈ I , and so x ∈

√
I . Then

y = π(x) ∈ π(
√
I). It follows that π(

√
I) =

√
0R/I .

Since
√
I ⊇ I = ker(π),

√
I is the ideal corresponding to

√
0R/I via π.

5. Let F be a subfield of a field E.

(a) For α1, . . . , αn ∈ E, define the evaluation map

ϕα1,··· ,αn : F [x1, · · · , xn] → E

by sending f(x1, . . . , xn) to f(α1, . . . , αn). Show that ϕα1,··· ,αn is a ring homo-
morphism. We say that (α1, · · · , αn) ∈ F n is a zero of f = f(x1, · · · , xn) if
f(α1, . . . , αn) = 0, or equivalently, if ϕα1,··· ,αn(f) = 0.

(b) Given a subset V ⊂ F n, show that the set of polynomials f ∈ F [x1, · · · , xn] such
that every element in V is a zero of f forms an ideal of F [x1, · · · , xn].

Answer. (a) It is the multi-variable evaluation homomorphism, and can be realized as
(evα1◦evα2◦...◦evαn)|F [x1,··· ,xn], where each evαr : E[x1, ..., xr] = E[x1, ..., xr−1][xr] →
E[x1, ..., xr−1] is the evaluation homomorphism sending xr to αr.
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(b) That set is
⋂

(α1,··· ,αn)∈V ker(ϕα1,··· ,αn), and is an ideal of F [x1, ..., xn]

6. Prove the equivalence of the following two statements:
Fundamental Theorem of Algebra: Every nonconstant polynomial in C[x] has a zero
in C.
Nullstellensatz for C[x]: Let f1(x), . . . , fr(x) ∈ C[x] and suppose that every α ∈ C
that is a zero of all r of these polynomials is also a zero of a polynomial g(x) in C[x].
Then some power of g(x) is in the smallest ideal of C[x] that contains the r polynomials
f1(x), . . . , fr(x).

Answer. (FTA =⇒ N ) Suppose we have FTA. Then every nonconstant polynomial in
C[x] factors into c(x− z1)

k1 ...(x− zr)
kr for some c, z1, ..., zr ∈ C, k1, ..., kr ∈ Z>0.

Let f1(x), . . . , fr(x) ∈ C[x] and suppose that every α ∈ C that is a zero of all r of these
polynomials is also a zero of a polynomial g(x) in C[x]. Let I = (f1, ..., fr). Since C[x]
is a PID, I = (h) for some h ∈ C[x].
Case 1. h is not a constant polynomial. Write h = c(x− z1)

k1 ...(x− zs)
ks as above. Note

that each fj ∈ (h), so h|fj for each j. Then each zi is a root of h, hence a root of fj for
each j. By assumption g(zi) = 0 for each i = 1, 2, ..., s. Then (x − z1)...(x − zs) | g.
Then gmax (k1,...,ks) ∈ (h) = I .

Case 2. h is a constant. If h ̸= 0, then (h) = (1), and g ∈ (h). If h = 0, then each fi = 0,
so g is zero everywhere on C, and so g = 0 ∈ (h).

(FTA ⇐= N ) Conversely, suppose we have N . Let f be a nonconstant polynomial in
C[x]. Suppose f has no root in C. Let g = 1, then any root of f is a root of g, and by N,
gn ∈ (f). But then 1 ∈ (f). This is absurd because deg(f) > 0. Therefore, f has a root
in C.


