THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Homework 9 solutions

Compulsory Part

1. Let R be a commutative ring and I an ideal of R. Show that the set \sqrt{I} of all $a \in R$, such that $a^n \in I$ for some $n \in \mathbb{Z}^+$, is an ideal of R, called the **radical** of I.

Answer. Clearly, $0^1 = 0 \in I$, so $0 \in \sqrt{I}$.

Let $x, y \in \sqrt{I}$. Then $x^m, y^n \in I$ for some m, n > 0. Then $(x+y)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} x^k y^{m+n-k}$. But for any $0 \le k \le m+n$, either $k \ge m$ or $m+n-k \ge n$. Hence either $x^k \in I$ or $y^{m+n-k} \in I$. It follows that each summand and hence $(x+y)^{m+n}$ is in I. Then $x+y \in \sqrt{I}$.

Let $a \in R, x \in \sqrt{I}$ Then $x^m \in I$ for some m > 0. Then $(ax)^m = a^m x^m \in I$. Therefore, $ax \in \sqrt{I}$.

It follows that \sqrt{I} is an ideal.

- 2. Show by examples that for proper ideals I of a commutative ring R,
 - (a) \sqrt{I} need not equal *I*.
 - (b) \sqrt{I} may equal *I*.

Answer. (a) Take $R = \mathbb{Z}[x]/\langle x^2 \rangle$ and I = 0. Then $x \in \sqrt{I} - I$ because $x^2 \in \langle x^2 \rangle$.

- (b) Take $R = \mathbb{Z}$ and I = 0. Then $\sqrt{I} = I$ because \mathbb{Z} is an integral domain.
- 3. Prove that $\mathbb{Z}[x]$ is not a PID by showing that the ideal $\langle 2, x \rangle$ is not principal.

Answer. Suppose the ideal $\langle 2, x \rangle$ is principal ideal $\langle p(x) \rangle$. Since $2 \in \langle p(x) \rangle$, 2 = p(x)q(x) for some $q(x) \in \mathbb{Z}[x]$. Since \mathbb{Z} is an integral domain, we have $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$. Thus, both p(x) and q(x) must be constant. The only possible options for p(x) are $\{\pm 1, \pm 2\}$. However, This ideals obviously either contain units or not contain x.

4. Let D be an integral domain. Show that, for k = 1, ..., n, the ideal $\langle x_1, ..., x_k \rangle$ is prime in $D[x_1, ..., x_n]$.

Answer. Note that we have the isomorphism: $D[x_1, ..., x_n]/\langle x_1, ..., x_k \rangle \simeq D[x_{k+1}, ..., x_n]$. We conclude that $\langle x_1, ..., x_n \rangle$ is a prime ideal since $D[x_{k+1}, ..., x_n]$ is an integral domain.

5. Let $\varphi : R \to S$ be a homomorphism of commutative rings, and let $I \subset S$ be an ideal. Prove that if I is a prime ideal in S, then $\varphi^{-1}(I)$ is a prime ideal in R. Show by giving an exmple that, however, $\varphi^{-1}(I)$ is not necessarily maximal when I is maximal. **Answer.** Let $\varphi : R \to S$ be a homomorphism of commutative rings, and let $I \subset S$ be an ideal. Suppose I is prime in S. Let $x, y \in R$ with $xy \in \varphi^{-1}(I)$. Then $\varphi(x)\varphi(y) = \varphi(xy) \in I$. Since I is prime, $\varphi(x) \in I$ or $\varphi(y) \in I$. Therefore, $x \in \varphi^{-1}(I)$ or $y \in \varphi^{-1}(I)$. It follows that $\varphi^{-1}(I)$ is a prime ideal in R.

Consider the embedding $\mathbb{Z} \to \mathbb{Q}$, $\{0\}$ is a maximal ideal in \mathbb{Q} , but its preimage $\{0\}$ is not a maximal ideal in \mathbb{Z} .

6. Show that every prime ideal in a *finite* commutative ring R is a maximal ideal.

Answer. Let R be a finite commutative ring. Let P be a prime ideal in R. Then R/P is a finite integral domain. Let $x \in R/P$ be a nonzero element. Let $m_x : R/P \to R/P$ be defined by $m_x(y) = xy$. If $m_x(y) = m_x(y')$, then $x(y - y') = m_x(y - y') = 0$. Then y - y' = 0 since R/P is an integral domain. Therefore, m_x is injective. Since R/P is finite, m_x is surjective. Therefore, $xy = m_x(y) = 1$ for some $y \in R/P$. Then x is a unit in R/P. It follows that R/P is a field. Therefore, P is a maximal ideal in R.

Optional Part

1. Let R be a commutative ring, and let P be a prime ideal of R. Suppose that 0 is the only zero-divisor of R contained in P. Show that R is an integral domain.

Answer. Let $x, y \in R$. Suppose xy = 0. Then $xy \in P$, and so $x \in P$ or $y \in P$. Without loss of generality, we assume that $x \in P$. If $y \neq 0$, then x is a zero-divisor of R contained in P. Then x = 0. It follows that y = 0 or x = 0. Therefore, R is an integral domain.

2. An element a of a ring R is **nilpotent** if $a^n = 0$ for some $n \in \mathbb{Z}^+$. Show that the collection N of all nilpotent elements in a commutative ring R is an ideal, called the **nilradical** of R.

Answer. Note that it is just the set $\sqrt{\{0\}}$. By Ex.1 in the compulsory part, it is an ideal.

3. Show that the nilradical N of a commutative ring R is contained in every prime ideal of R.

Answer. By definition of prime ideals, $x^k = 0 \in P \Rightarrow x \in P$ for any prime ideal P. Thus the nilradical is contained in each prime ideal.

4. What is the relationship between the radical \sqrt{I} of an ideal I in a commutative ring R and the nilradical of the quotient ring R/I? Explain your answer carefully.

Answer. Let $\pi : R \to R/I$ be the natural projection. Then $\pi(\sqrt{I}) = \sqrt{0_{R/I}}$. Proof: For any $x \in \sqrt{I}, x^n \in I$ for some n > 0. Then $\pi(x)^n \in 0_{R/I}$, and so $\pi(x) \in \sqrt{0_{R/I}}$. Therefore, $\pi(\sqrt{I}) \subseteq \sqrt{0_{R/I}}$.

Conversely, let $y \in \sqrt{0_{R/I}}$, then $y^n = 0_{R/I}$ for some n > 0. Since π is surjective, $\pi(x) = y$ for some $x \in R$. Then $\pi(x^n) = y^n = 0_{R/I}$. Then $x^n \in I$, and so $x \in \sqrt{I}$. Then $y = \pi(x) \in \pi(\sqrt{I})$. It follows that $\pi(\sqrt{I}) = \sqrt{0_{R/I}}$.

Since $\sqrt{I} \supseteq I = \ker(\pi)$, \sqrt{I} is the ideal corresponding to $\sqrt{0_{R/I}}$ via π .

- 5. Let F be a subfield of a field E.
 - (a) For $\alpha_1, \ldots, \alpha_n \in E$, define the *evaluation map*

$$\phi_{\alpha_1,\cdots,\alpha_n}: F[x_1,\cdots,x_n] \to E$$

by sending $f(x_1, \ldots, x_n)$ to $f(\alpha_1, \ldots, \alpha_n)$. Show that $\phi_{\alpha_1, \ldots, \alpha_n}$ is a ring homomorphism. We say that $(\alpha_1, \cdots, \alpha_n) \in F^n$ is a zero of $f = f(x_1, \cdots, x_n)$ if $f(\alpha_1, \ldots, \alpha_n) = 0$, or equivalently, if $\phi_{\alpha_1, \cdots, \alpha_n}(f) = 0$.

- (b) Given a subset $V \subset F^n$, show that the set of polynomials $f \in F[x_1, \dots, x_n]$ such that every element in V is a zero of f forms an ideal of $F[x_1, \dots, x_n]$.
- Answer. (a) It is the multi-variable evaluation homomorphism, and can be realized as $(ev_{\alpha_1} \circ ev_{\alpha_2} \circ ... \circ ev_{\alpha_n})|_{F[x_1,...,x_n]}$, where each $ev_{\alpha_r} : E[x_1,...,x_r] = E[x_1,...,x_{r-1}][x_r] \rightarrow E[x_1,...,x_{r-1}]$ is the evaluation homomorphism sending x_r to α_r .

- (b) That set is $\bigcap_{(\alpha_1,\dots,\alpha_n)\in V} \ker(\phi_{\alpha_1,\dots,\alpha_n})$, and is an ideal of $F[x_1,\dots,x_n]$
- 6. Prove the *equivalence* of the following two statements:

Fundamental Theorem of Algebra: Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C} .

Nullstellensatz for $\mathbb{C}[x]$: Let $f_1(x), \ldots, f_r(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial g(x) in $\mathbb{C}[x]$. Then some power of g(x) is in the smallest ideal of $\mathbb{C}[x]$ that contains the r polynomials $f_1(x), \ldots, f_r(x)$.

Answer. (*FTA* \implies *N*) Suppose we have FTA. Then every nonconstant polynomial in $\mathbb{C}[x]$ factors into $c(x - z_1)^{k_1} \dots (x - z_r)^{k_r}$ for some $c, z_1, \dots, z_r \in \mathbb{C}, k_1, \dots, k_r \in \mathbb{Z}_{>0}$.

Let $f_1(x), \ldots, f_r(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial g(x) in $\mathbb{C}[x]$. Let $I = (f_1, \ldots, f_r)$. Since $\mathbb{C}[x]$ is a PID, I = (h) for some $h \in \mathbb{C}[x]$.

Case 1. *h* is not a constant polynomial. Write $h = c(x - z_1)^{k_1} ... (x - z_s)^{k_s}$ as above. Note that each $f_j \in (h)$, so $h|f_j$ for each *j*. Then each z_i is a root of *h*, hence a root of f_j for each *j*. By assumption $g(z_i) = 0$ for each i = 1, 2, ..., s. Then $(x - z_1) ... (x - z_s) | g$. Then $g^{\max(k_1,...,k_s)} \in (h) = I$.

Case 2. *h* is a constant. If $h \neq 0$, then (h) = (1), and $g \in (h)$. If h = 0, then each $f_i = 0$, so *g* is zero everywhere on \mathbb{C} , and so $g = 0 \in (h)$.

 $(FTA \iff N)$ Conversely, suppose we have N. Let f be a nonconstant polynomial in $\mathbb{C}[x]$. Suppose f has no root in \mathbb{C} . Let g = 1, then any root of f is a root of g, and by N, $g^n \in (f)$. But then $1 \in (f)$. This is absurd because $\deg(f) > 0$. Therefore, f has a root in \mathbb{C} .